WEAK* SUPPORT POINTS OF CONVEX SETS IN E*

BY R. R. PHELPS¹)

ABSTRACT

Density theorems are obtained for weak* support points and support functionals of certain convex subsets of the dual of a Banach space.

Suppose that C is a closed convex nonempty subset of a real topological vector space E. A point x of C is said to be a support point of C if there exists a closed hyperplane H containing x such that C is on one side of H. Equivalently, x is a support point of C provided there exists a nontrivial continuous linear functional f on E such that $f(x) = \sup \{f(y): y \in C\} \equiv \sup f(C)$. (Such a functional is called a support functional of C.) Unless there are further hypotheses on the set C or the space E, there might be no support points in C. For instance, Klee [3] has shown the existence of a nonempty closed convex unbounded subset C of a certain metrizable, separable complete locally convex space (the space of all real sequences, in the product topology) such that C contains no support points. On the other hand, if E is a Banach space, then it is known [1] that the support points of C are dense in the boundary of C and that the support functionals of C are norm dense among those which are bounded above on C. (Furthermore, the latter assertion is valid in a normed linear space E only if E is complete.) It remains an open question whether a bounded closed convex subset of a metrizable complete locally convex space necessarily has support points. In the present note, we will prove two results, analogous to the two main theorems of [1], for certain special locally convex spaces, namely, the space E* in its weak* topology, where E is a Banach space. (In its norm topology, of course, E* is a Banach space and the results from [1] are applicable; they also apply in the weak* topology if E is reflexive.)

Thus, the dual of E^* is E itself, so that our closed hyperplanes will be weak* closed and they will be determined by functionals of the form $f \to f(x)$, for some $x \neq 0$ in E. It follows, then, that a support point (which, for emphasis, we will call a weak* support point) of a weak* closed convex subset C of E^* is an element f of C such that $f(x) = \sup\{g(x): g \in C\} \equiv \sup C(x)$ for some $x \neq 0$ in E. Such an element x will be called a weak* support functional of C. The first of our two theorems may then be stated as follows.

Received October 28, 1964.

¹⁾ Supported by National Science Foundation Grant GP 378.

THEOREM 1. If E is a Banach space and C is a weak* closed convex subset of E^* then the weak* support points of C are norm-dense in the norm-boundary of C.

[It is easily seen that the choice of topologies (norm-dense in the norm-boundary) in the conclusion to this result is the best among the four possible combinations of norm and weak* topologies.]

Our second theorem is not as simple, but it has some simply stated corollaries. Geometrically, it says that if C can be strictly separated from a bounded weak* closed set A by a weak* closed hyperplane H, then it can be strictly separated from A by one of its weak* supporting hyperplanes H_1 , with H_1 nearly parallel to H. There is no loss in generality in assuming that A is convex.

THEOREM 2. Suppose that E is a Banach space, that C and A are weak* closed convex subsets of E*, that A is bounded and that for some x in E $\sup C(x) < \inf A(x)$. Then for any $\varepsilon > 0$ there exists a weak* support functional, x_0 of C such that $||x - x_0|| < \varepsilon$ and $\sup C(x_0) < \inf A(x_0)$.

COROLLARY 1. If E is a Banach space and C is a weak* closed convex subset of E*, then the weak* support functionals of C are dense in E among those x for which $\sup C(x) < \infty$.

A weak* supporting half space for C is a set of the form $\{g: g(x) \leq \sup C(x)\}$ where x is a weak* support functional for C.

COROLLARY 2. If E is a Banach space and C is a weak* closed convex subset of E*, then C is the intersection of its weak* supporting half-spaces.

The proofs of these corollaries are immediate from Theorem 2.

At the end of this note we will discuss examples which show that Theorem 1 may fail (even for bounded sets) if C is merely assumed to be norm closed, or if E is not assumed to be complete. Also, the fact that weak* closed convex subsets of E* have a certain local weak* compactness property clearly does not imply that every weak* continuous functional which is bounded above on C is a support functional; consider the convex set defined by a hyperbola in the plane.

The methods of proof are closely related to those in [1], with one exception. In [1], the final step in producing support points was an application of the separation theorem in E; in the present note, it is applied in $E \times R$ to convex sets associated with the graphs of appropriate convex functions. This idea was suggested by A. Brøndsted and R. T. Rockafellar [2], who used it in their work on support points of the graphs of convex functions.

The first step in our proof is a lemma which is a bit more general than the corresponding lemma in [1] and less general than the one in [4]. We include the proof for the sake of completeness.

LEMMA 1. Suppose that ϕ is an upper semicontinuous function on the Banach space E, with $-\infty \le \phi < \infty$. If k > 0, partially order the set $X = \{x : \phi(x) > -\infty\}$ by (1) x > y if and only if $k \| x - y \| \le \phi(x) - \phi(y)$. If ϕ is bounded above on X then for any z in X there exists a maximal element x_0 in X such that $x_0 > z$.

Proof. Since the ordering defined in (1) is *proper*, we can apply Zorn's lemma to the set $Z = \{x: x \in X, x > z\}$. If W is any linearly ordered subset of Z, let $a = \sup \{\phi(w): w \in W\}$; this is finite since ϕ is bounded above on X. Since W is linearly ordered we can choose a sequence $\{w_n\} \subset W$ with $w_{n+1} > w_n$ for $n = 1, 2, 3, \cdots$ such that $\phi(w_n) \to a$. It follows that if $m \ge n$, then $w_m > w_n$ and hence $k \parallel w_m - w_n \parallel \le \phi(w_m) - \phi(w_n)$. Since $\phi(w_n)$ converges, this shows that $\{w_n\}$ is a Cauchy sequence in E and hence converges to an element E in E. Since E is upper semicontinuous, E im E im E im sup E important E impo

$$\|k\| \|x - w_n\| = \lim_{m \ge n} k \|w_m - w_n\| \le \lim_{m \ge n} \sup \phi(w_m) - \phi(w_n) = a - \phi(w_n) \le$$

 $\le \phi(x) - \phi(w_n),$

so $x > w_n$. Finally, for any w in W, $w \ne x$, there exists n with $w_n > w$. (If not, then for all n, $k \| w - w_n \| \le \phi(w) - \phi(w_n) \le a - \phi(w_n) \to 0$, hence $w = \lim w_n = x$.) Thus, Zorn's lemma is applicable and Z has a maximal element x_0 . If $x \in X$ and $x > x_0$, then $x > x_0 > z$ so $x \in Z$ and hence $x = x_0$, i.e. x_0 is a maximal element of X such that $x_0 > z$.

The next lemma formalizes the use of the separation theorem in $E \times R$ referred to above. Recall that a function f is convex [concave, affine] if for each x, y in E and $0 < \lambda < 1$, $f(\lambda x + (1 - \lambda)y) \le [\ge, =] \lambda f(x) + (1 - \lambda)f(y)$.

LEMMA 2. Suppose that ψ_1 is a lower semicontinuous convex function on E with $-\infty < \psi_1 \le \infty$ ($\psi_1 \ne \infty$), and that ψ_2 is a continuous concave function on $E(\psi_2 \ne -\infty)$. If $\psi_1 \ge \psi_2$, then there exists a continuous affine functional h on E such that $\psi_1 \ge h \ge \psi_2$.

Proof. In the space $E \times R$ (product topology) let $C_1 = \{(x,r) : r \ge \psi_1(x)\}$ and let $C_2 = \{(x,r) : r \le \psi_2(x)\}$. Then C_1 and C_2 are closed convex sets and since ψ_2 is continuous, the interior of C_2 is the nonempty set $\{(x,r) : r < \psi_2(x)\}$. This latter set misses C_1 , so the separation theorem can be applied to yield a closed hyperplane H which separates C_1 and C_2 . To see that H is the graph of a continuous affine function h (defined by h(x) = r if and only if $(x,r) \in H$), we need only show that for at least one point x_0 , the line $\{x_0\} \times R$ is not contained in H. Any point x_0 such that $\psi_1(x_0) < \infty$ will suffice, since $(x_0, \psi_1(x_0)) \in C_1$ and will be on one side of H while $(x_0, \psi_2(x_0) - 1) \in \operatorname{int} C_2$ and will be strictly on the other

side. Finally, for any x, $(x, h(x)) \in H$, so if $\psi_1(x) < h(x)$ then $(x, \psi_1(x))$ will be strictly on one side of H, and in C_1 . For $r > h(x) > \psi_1(x)$, (x, r) is strictly on the other side of H and also in C_1 , an impossibility which implies that $h \le \psi_1$. Similarly, $\psi_2 \le h$ and the proof is complete.

The functions ψ_1 and ψ_2 which we will use in the proofs are certain combinations of linear functionals, the norm, and one other classical convex function, the support functional s_C for a weak* closed convex subset C of E^* . For x in E define $s_C(x) = \sup\{f(x): f \in C\} \equiv \sup C(x)$. This function is clearly convex and positive-homogeneous (i.e. $s_C(\lambda x) = \lambda s_C(x)$ if $\lambda \ge 0$), and it follows from the separation theorem (applied in E^* in its weak* topology) that $f \in C$ if (and only if) $f \le s_C$. It is not difficult to see that s_C is lower semicontinuous. Finally, if C is bounded, with $||f|| \le M$, say, for $f \in C$, then for any such f and any f in f in f we have f(f) = f(f) + f(f) + f(f) = f(f) + f(f) = f(f) + f(f) = f(f) + f(f) = f(f) + f(f) =

THEOREM 1. If C is a weak* closed convex subset of E^* , then the weak* support points of C are norm-dense in the norm-boundary of C.

Proof. Given f in the boundary of C and $\varepsilon > 0$, choose f_1 in $E^* \sim C$ such that $\|f - f_1\| < \varepsilon/2$ and use the separation theorem to choose z in E, $\|z\| = 1$, such that $\sup C(z) < f_1(z)$. Then $f(z) \ge f_1(z) - \varepsilon/2 > \sup C(z) - \varepsilon/2 = s_C(z) - \varepsilon/2$ and $f \le s_C$. Let $\phi = f - s_C$, so that ϕ is upper semicontinuous and $\phi \le 0$. By applying Lemma 1 (with $k = \varepsilon$) we can obtain x_0 in E such that $x_0 > z$ and x_0 is maximal in the (nonempty) set where $\phi > -\infty$. The first assertion implies that $\varepsilon \|x_0 - z\| \le \phi(x_0) - \phi(z) \le -\phi(z) = s_C(z) - f(z) \le \varepsilon/2$, so $\|x_0 - z\| \le 1/2$, and hence (recall that $\|z\| = 1$) $x_0 \ne 0$. The maximality of x_0 implies that for any $y \ne x_0$ such that $\phi(y) > -\infty$ (equivalently, $s_C(y) < \infty$) we have $\varepsilon \|y - x_0\| > \phi(y) - \phi(x_0) = f(y - x_0) - [s_C(y) - s_C(x_0)]$. Let $\psi_1 = s_C - s_C(x_0)$, $\psi_2(y) = f(y - x_0) - \varepsilon \|y - x_0\|$. By Lemma 2 there exist a continuous affine functional h on E such that $\psi_1 \ge h \ge \psi_2$. Since

$$0 = \psi_1(x_0) \ge h(x_0) \ge \psi_2(x_0) = 0,$$

there exists a continuous linear functional g on E such that $h = g - g(x_0)$. Thus $s_C(y) - g(y) \ge s_C(x_0) - g(x_0)$ for any y; since s_C and g are positive-homogeneous, this implies that $s_C - g \ge 0$ and $s_C(x_0) - g(x_0) = 0$, i.e. $g \in C$ and $g(x_0) = \sup C(x_0)$. The inequality $h \ge \psi_2$ means, on the other hand, that for all y, $g(y - x_0) \ge 2 \le f(y - x_0) - \varepsilon \|y - x_0\|$. Thus, for any x, $(f - g)(x) \le \varepsilon \|x\|$, so that $\|f - g\| \le \varepsilon$ and the proof is complete.

THEOREM 2. Suppose that C and A are weak* closed convex subsets of E^* , that A is bounded, and that for some x in E, $\sup C(x) < \inf A(x)$. Then for any

 $\varepsilon > 0$ there exists x_0 in E which supports C such that $||x - x_0|| < \varepsilon$ and $\sup C(x_0) < \inf A(x_0)$.

Proof. Choose f in C such that $f(x) > \sup C(x) - 1$. Let

$$B = -A(= \{ -g : g \in A \});$$

we can assume without loss of generality that $0 \in A$ so that $s_B \ge 0$. Since $f \in C$, $f - s_C \le 0$, and hence $0 \ge \phi = f - s_C - s_B$. Furthermore, $\phi(x) > -1 - s_B(x)$. Since ϕ is upper semicontinuous, it follows from Lemma 1 (with k > 0 to be chosen later) that there exists x_0 in E such that $k \|x_0 - x\| \le \phi(x_0) - \phi(x) \le$ $\leq -\phi(x) < 1 + s_B(x)$ and $k ||y - x_0|| > \phi(y) - \phi(x_0)$ for y in E, $y \neq x_0$. Let $\psi_1 = s_C - s_C(x_0)$ and $\psi_2(y) = f(y - x_0) - k \|y - x_0\| - [s_B(y) - s_B(x_0)];$ then ψ_1 and ψ_2 satisfy the hypotheses to Lemma 2 and $\psi_1(y) > \psi_2(y)$ if $y \neq x_0$. Thus, there exists a continuous affine functional h on E such that $\psi_1 \ge h \ge \psi_2$. Exactly as in the proof of Theorem 1, we have $h = g - g(x_0)$ for some continuous linear functional g on E, and $s_C - g \ge 0 = s_C(x_0) - g(x_0)$, so that $g \in C$ and $g(x_0) = \sup C(x_0)$. Since $k ||x_0 - x|| \le 1 + s_B(x)$, for sufficiently large k we have $||x_0 - x|| < \varepsilon$. Finally, since $\phi(x_0) - \phi(x) \ge k ||x_0 - x|| \ge 0$, we have $f(x_0) - s_C(x_0) - s_B(x_0) \ge f(x) - s_C(x) - s_B(x) = f(x) + \beta$, where $\beta = -s_C(x) - s_B(x) = -\sup C(x) + \inf A(x)$ is positive by hypothesis. Thus, $||f|| k^{-1} [1 + s_B(x)].$

For sufficiently large k this is positive and the proof is complete.

We conclude with some examples which show that Theorem 1 may fail if certain of the hypotheses are weakened. For instance, it is not enough to assume merely that C is norm closed. Indeed, suppose that E is not reflexive and choose an element F in E^{**} , ||F|| = 1, which is not in the canonical image of E. Let $C = \{f: f \in E^*, ||f|| \le 1 \text{ and } |F(f)| \le 1/2\}$; clearly, C is norm closed, convex, bounded and has nonempty norm-interior. It is easily verified that the set $A = \{f: F(f) = 1/2 ||f|| < 1\}$ is open in the norm boundary of C, but contains no weak* support points of C. (Any functional which supports C at a point of A is necessarily a constant multiple of F, hence not weak* continuous.)

In Theorem 3 of [1] it is shown that in any incomplete normed linear space E there exists a symmetric bounded closed convex set A with nonempty interior such that the support functionals of A are not dense in E^* (hence those which lie in the boundary B of the polar A° of A are not dense in B). The polar $C = A^\circ$ of A is therefore a weak* compact convex subset of E^* , but its weak* support points are not dense in its norm-boundary, which shows that completeness of E is essential to Theorem 1. (It is interesting to note that we do not require completeness of E^* in the weak* topology; this occurs only when E is finite dimensional.)

BIBLIOGRAPHY

- 1. Errett Bishop and R. R. Phelps, The support functionals of a convex set, Proc. Symp. Pure Math., Amer. Math. Soc. 7 (Convexity) (1963), 27-35.
- 2. A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc-Amer. Math. Soc. (to appear).
 - 3. V. L. Klee, On a question of Bishop and Phelps, Amer. J. Math. 85 (1963), 95-98.
- 4. R. R. Phelps, Support cones and their generalizations, Proc. Symp. Pure. Math., Amer. Math. Soc. 7 (Convexity) (1963), 393-401.

University of Washington Seattle, Washington